Search results for "Fibre break"

showing 6 items of 6 documents

The control of the residual lifetimes of carbon fibre-reinforced composite pressure vessels

2015

International audience; The understanding of the degradation of carbon fibre composites, with emphasis on the use of these composites in filament-wound pressure vessels, is explored. Earlier studies by many researchers have led to a general appreciation of the mechanisms involved; however, only recently have both computational power and experimental techniques become sufficiently developed to allow for the use of quantitative analyses. It is shown that damage is controlled by fibre failure, and that initially this occurs randomly within the structure. In monotonic loading, the development of clusters of fibre breaks causes rapid failure; however, under maintained loads the kinetics of damag…

Materials scienceComposite numberPressure vesselsCarbon fibersDamage accumulation[ PHYS.COND.CM-MS ] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]02 engineering and technologyCarbon fibre composites021001 nanoscience & nanotechnologyResidualIntrinsic safety factorsPressure vessel020303 mechanical engineering & transports0203 mechanical engineeringFibre breaksvisual_artvisual_art.visual_art_medium[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Composite material0210 nano-technology
researchProduct

Effect of the loading rate on ultimate strength of composites. Application: Pressure vessel slow burst test

2013

International audience; The strength of unidirectional elastic fibre composites is shown to depend on the loading rate as the viscoelastic nature of the matrix results in a fall in breaking load as the rate is reduced. The simulation of the accumulation of fibre breaks leading to failure, takes into account all physical phenomena involved fibre failure, including the stochastic nature of fibre strength, stress transfer through the matrix between reinforcements, interfacial debonding and the viscoelastic nature of the matrix. The kinetics of composite failure are seen to involve the initial formation of random fibre breaks which at higher loads coalesce into clusters of broken fibres. The ra…

Materials scienceSpeed effectPressure vessels[ SPI.MAT ] Engineering Sciences [physics]/MaterialsComposite numberMicromechanicsFibre break02 engineering and technology021001 nanoscience & nanotechnologyPressure vesselViscoelasticity[SPI.MAT]Engineering Sciences [physics]/MaterialsStress (mechanics)Matrix (mathematics)Mathematics::Algebraic Geometry020303 mechanical engineering & transports0203 mechanical engineeringUltimate tensile strengthCeramics and CompositesLoading rateMicromechanicsComposite material0210 nano-technologyCivil and Structural EngineeringComposite Structures
researchProduct

Fibre break failure processes in unidirectional composites: evaluation of critical damage states

2016

Earlier work which successfully modelled the kinetics of fibre breakage in unidirectional composites under monotonic tensile loading has been extended to quantify the kinetics of fibre failure during both monotonic and sustained tensile loading. In both cases, failure was seen to occur when a critical density of large clusters (more than 16 fibres are broken within the representative volume element) of fibre breaks developed. However, in monotonic loading failure occurred very quickly after the first development of these large clusters, whereas under sustained loading the composite could accommodate greater levels of large clusters because of the lower applied load. This article is part of …

effects of monotonic and sustained tensile loadingWork (thermodynamics)Materials scienceclusters of breaksGeneral MathematicsComposite numberfibre breakscritical damageGeneral Engineering[ PHYS.COND.CM-MS ] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]General Physics and AstronomyStructural integrity02 engineering and technology021001 nanoscience & nanotechnology020303 mechanical engineering & transports0203 mechanical engineeringBreakageUltimate tensile strength[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Representative elementary volumeComposite material0210 nano-technology
researchProduct

The application of a reduced volume method for the simulation of the characterisation of a carbon fibre pressure vessel

2018

International audience; The characteristics of advanced composite materials make them ideally suited for use in pressure vessels for storing gas as fuel for ground transport vehicles. It has been found that the failure process starts with randomly distributed fibre breaks and as the loading continues, they coalesce into clusters of fibre breaks which lead to failure [4]. However, improvements are needed to reduce computational times when performing full-scale simulations. The reduced volume method is therefore applied to the stochastic fibre break model related to the concept of an integral range. This method allows the calculation for a certain volume of a laminate that statistically repre…

fibre break[SPI.MECA.MEMA]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph]representative volume elementcomposite pressure vesselintegral range[SPI.MECA.MEMA] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph]
researchProduct

Comparison of the accumulation of fibre breaks occurring in a unidirectional carbon/epoxy composite identified in a multi-scale micro-mechanical mode…

2010

National audience; A model to predict fibre break accumulation that takes into account all physical phenomena at the origin of the fibre break (i.e. the random nature, stress transfer due to breaks, fibre debonding and viscosity of the matrix) shows clearly that the failure of a unidirectional composite structure results in the formation of random fibre breaks which at higher loads coalesce into clusters of broken fibres. The object of the study is to experimentally confirm this scenario. Many techniques exist to detect the failure of carbon fibre composites, however none of them offer a resolution that allows this goal to be achieved in a non-destructive manner and in three dimensions. Hig…

fibre breakhigh resolution computed tomographymicromechanics[ SPI.MAT ] Engineering Sciences [physics]/Materialsunidirectional composite[SPI.MAT] Engineering Sciences [physics]/Materialsmulti-scale modelling[SPI.MAT]Engineering Sciences [physics]/Materials
researchProduct

Effect of the Time Dependent Loading of Type IV Cylinders using a Multiscale Model

2019

International audience; The current requirements for composite cylinders are still based on an arbitrary approach derived from the behaviour of metal structures, that the designed burst pressure should be at least 2.5 times the maximum in-service pressure [1]. This could lead to an over-designed composite cylinder for which the weight saving would be less than optimum. Moreover, predicting the lifetime of composite cylinders is a challenging task due to their anisotropic characteristics. A federal research institute in Germany (BAM) has proposed a minimum load-cycle requirement that mitigates this issue by using a Monte-Carlo analysis of the burst test results [2-3]. To enrich this study, m…

fibre breaktype IV cylinders[SPI.MECA.STRU]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Structural mechanics [physics.class-ph]time dependent load[SPI.MECA.MEMA]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph][SPI.MECA.MSMECA] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Materials and structures in mechanics [physics.class-ph]multiscale model[SPI.MECA.STRU] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Structural mechanics [physics.class-ph][SPI.MECA.MSMECA]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Materials and structures in mechanics [physics.class-ph][SPI.MECA.MEMA] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph]
researchProduct